

ATTACHMENT 3

SCOPE OF WORK FOR A RCRA FACILITY INVESTIGATION

PURPOSE

The purpose of this RCRA Facility Investigation (RFI) is to determine the nature and extent of releases of hazardous waste or constituents from regulated units, solid waste management units, and other source areas at the Facility and to gather all necessary data to support the Corrective Measures Study. The RFI must include characterization of the facility (processes, waste management, etc), environmental setting, source areas, nature and extent of contamination, migration pathways (transport mechanisms) and all potential receptors.

SCOPE

The documents required for a RFI are, unless the Department of Toxic Substances Control (Department) specifies otherwise, a Current Conditions Report, a RCRA Facility Investigation Workplan and a RCRA Facility Investigation Report. The scope of work (SOW) for each document is specified below. The SOWs are intended to be flexible documents capable of addressing both simple and complex site situations. If the Owner/Operator or Respondent can justify, to the satisfaction of the Department, that a plan and/or report or portions thereof are not needed in the given site specific situation, then the Department may waive that requirement.

The scope and substance of the RFI should be focused to fit the complexity of the site-specific situation. It is anticipated that Owner/Operator's or Respondent's of sites with complex environmental problems may need more extensive RFI's than other facilities with less complex problems.

The Department may require the Owner/Operator or Respondent to conduct additional studies beyond what is discussed in the SOWs in order to meet the objectives of the RFI. The Owner/Operator or Respondent will furnish all personnel, materials and services necessary to conduct the additional tasks.

A. Current Conditions Report

The Current Conditions Report must describe existing information pertinent to the facility including operations,

processes, waste management, geology, hydrogeology, contamination, migration pathways, potential receptor populations and interim corrective measures. The required format for a current conditions report is described below. If some of this information does not exist, so indicate in the applicable section.

1. Introduction

1.1 Purpose

Describe the purpose of the current conditions report (e.g., summary and evaluation of existing information related to the facility; required as a component of RFI).

1.2 Organization of Report

Describe how the report is organized.

2. Facility Description

Summarize background, current operations, waste management and products produced at the facility. Include a map that shows the general geographic location of the facility.

Describe current facility structures including any buildings, tanks, sumps, wells, waste management areas, landfills, ponds, process areas and storage areas.

Include detailed facility maps that clearly show current property lines, the owners of all adjacent property, surrounding land use (residential, commercial, agricultural, recreational, etc.), all tanks, buildings, process areas, utilities, paved areas, easements, rights-of-way, waste management areas, ponds, landfills, piles, underground tanks, wells and other facility features.

3. Facility History

3.1 Ownership History

Describe the ownership history of the facility.

3.2 Operational History

Describe in detail how facility operations, processes and products have changed over time (historical aerial photographs could be useful for this purpose).

3.3 Regulatory History

Describe all permits (including waste discharge requirements) requested or received, any enforcement actions taken by the Department or designated agencies and any closure activities that are planned or underway.

3.4 Waste Generation

Describe all wastes (solid or hazardous) that have been generated at the facility. Include approximate waste volumes generated and summaries of any waste analysis data. Show how the waste stream (volume and chemical composition) has changed over time.

3.5 <u>Waste Management</u>

Describe in detail all past solid and hazardous waste treatment, storage and disposal activities at the facility. Show how these activities have changed over time and indicate the current status. Make a clear distinction between active waste management units and older out of service waste management units. Identify which waste management units are regulated under RCRA or California Health and Safety Code.

Include maps showing: (1) all solid or hazardous waste treatment, storage or disposal areas active after November 19, 1980, (2) all known past solid waste or hazardous waste treatment, storage or disposal areas regardless of whether they were active on November 19, 1980 and (3) all known past or present underground tanks or piping.

3.6 Spill and Discharge History

Provide approximate dates or periods of past product and waste spills, identify the materials spilled and describe any response actions conducted. Include a summary of any sampling data generated as a result of the spill. Include a map showing approximate locations of spill areas at the facility.

3.7 Chronology of Critical Events

Provide a chronological list (including a brief description) of major events, communications, agreements, notices of violation, spills, discharges that occurred throughout the facility's history.

4. Environmental Setting

4.1 Location/Land Use

Discuss facility size, location and adjacent land use. Include a rough demographic profile of the human population who use or have access to the facility and adjacent lands. Provide approximate distance to nearest residential areas, schools, nursing homes, hospitals, parks, playgrounds, etc.

4.2 <u>Local Ecology</u>

Describe any endangered or threatened species near the facility. Include a description of the ecological setting on and adjacent to the facility. Provide approximate distance to nearest environmentally sensitive areas such as marsh lands, wetlands, streams, oceans, forests, etc.

4.3 <u>Topography and Surface Drainage</u>

Describe the regional and site specific topography and surface drainage patterns that exist at the facility. Include a map that shows the topography and surface drainage depicting all waterways, wetlands, floodplains, water features, drainage patterns and surface water containment areas.

4.4 Climate

Discuss mean annual temperatures, temperature extremes, 25-year 24-hour maximum rainfall, average annual rainfall, prevailing wind direction, etc.

4.5 Surface Water Hydrology

Describe the facility's proximity (distance) and access to surface water bodies (e.g., coastal waters, lakes, rivers, creeks, drainage basins, floodplains, vernal pools, wetlands, etc.). Describe flows on-site that lead to holding basins, etc., and describe flows that leave the site.

4.6 Geology

Describe the regional and site specific geology including stratigraphy and structure. Include a geologic map and cross-sections to show the subsurface structure. Cross-sections should be at a natural scale

(vertical equals horizontal) and of sufficient detail to accurately plot cut and fills, alluvium, and structural features. Cross-sections should be taken on a grid pattern oriented normal to major geologic structure and spaced close enough to determine geology and ground water flow on a unit-by-unit basis.

4.7 <u>Hydrogeology</u>

Describe the regional and site specific hydrogeologic setting including any information concerning local aquifers, ground water levels, gradients, flow direction, hydraulic conductivity, and velocity. Include potentiometric surface contour maps. Describe the beneficial uses of the ground water (e.g., drinking water supply, agricultural water supply, etc.). Plot ground water elevations on the geologic cross-sections and indicate ground water flow directions and likely contaminant pathways. Describe temporal variations (seasonal and historical).

4.8 Ground Water Monitoring System

Describe the facility's ground water monitoring system including a table detailing the existing well construction. The table must, at a minimum, identify the following construction details for each well:

Well ID Completion Date Drilling Method Borehole Diameter (inches) Well Casing Diameter and Type Measuring Point Elevation (feet MSL) Borehole Depth (feet BGS) Depth of Well (feet) Screened Interval Formation Screened Slot Size & Type (inches) Filter Pack Material Filter Pack Thickness and Spacing Type of Filter Pack Seal Thickness of Filter Pack Seal Pump System (dedicated or non-dedicated) Type of Pump and Depth in the Well Approximate Depth to Water (feet BGS)

If some of this information is not available, so indicate on the table with an "NA". {BGS: Below Ground Surface, MSL: Mean Sea Level}

The monitoring well locations must be shown on the facility map (see Section A.2 of this Attachment).

5. Existing Degree and Extent of Contamination

For each medium where the Permit or Order identifies a release (e.g., soil, ground water, surface water, air, etc.), describe the existing extent of contamination. This description must include all available monitoring data and qualitative information on the locations and levels of contamination at the facility (both onsite and offsite). Include a general assessment of the data quality, a map showing the location of all existing sampling points and potential source areas and contour maps showing any existing ground water plumes at the facility (if ground water release). Highlight potential ongoing release areas that would warrant use of interim corrective measures (see Section 8, Interim Corrective Measures).

5.1 <u>Previous Investigations</u>

List and briefly describe all previous investigations that have occurred at the facility, agencies (e.g., the Department's Site Mitigation Branch, the Regional Water Quality Control Board, etc.) which required and/or oversaw the investigations, and agency contacts.

6. Potential Migration Pathways

6.1 Physical Properties of Contaminants

Identify the applicable physical properties for each contaminant that may influence how the contaminant moves in the environment. These properties could include melting point (degrees C), water solubility (mg/l), vapor pressure (mm Hg), Henry's law constant (atm-m3/mol), density (g/cc), dynamic viscosity (cp), kinematic viscosity (cs), octanol/water partition coefficient (log Kow), soil organic carbon/water partition coefficient (log koc) and soil/water partition coefficients, etc. Include a table that summarizes the applicable physical properties for each contaminant.

6.2 Conceptual Model of Contaminant Migration

Develop a conceptual model of contaminant migration. The conceptual model consists of a working hypothesis of how the contaminants may move from the release source to the receptor population. The conceptual

model is developed by looking at the applicable physical parameters for each contaminant and assessing how the contaminant may migrate given the existing site conditions (geologic features, depth to ground water, etc.).

Describe the phase (water, soil, gas, non-aqueous) and location where contaminants are likely to be found (e.g., if a ground water contaminant has a low water solubility and a high density, then the contaminant will likely sink and be found at the bottom of the aquifer, phase: non-aqueous). Include a discussion of potential transformation reactions that could impact the type and number of contaminants (i.e., what additional contaminants could be expected as a result of biotic and abiotic transformation reactions given the existing soil conditions).

A typical conceptual model should include a discussion similar to the following: benzene, ethylbenzene, toluene and xylenes are potential contaminants at the facility. Based on their high vapor pressures and relatively low water solubilities (see Henry's Law constant), the primary fate of these compounds in surface soils or surface water is expected to be volatilization to the atmosphere. These mono-cyclic aromatic hydrocarbons may leach from soils into ground water. The log koc (soil organic carbon/water partition coefficient) values for these compounds ranges from 1.9 to 4.0, indicating that sorption to organic matter in soils or sediments may occur only to a limited extent.

7. Potential Impacts of Existing Contamination

Describe the potential impacts on human health and the environment from any existing contamination and/or ongoing activities at the facility. This description must consider the possible impacts on sensitive ecosystems and endangered species as well as on local populations. Potential impacts from any releases to ground water, surface water, soil (including direct contact with contaminated surface soil) and air (including evaporation of volatile organic compounds from contaminated soil) must be discussed. If air could be a significant pathway, soil gas or vapor emissions and/or ambient air monitoring should be described.

7.1 Ground Water Releases

Identify all wells (municipal, domestic, agricultural,

industrial, etc.) within a 1-mile radius of the facility. Include a summary of available water sampling data for any identified municipal, industrial or domestic supply wells.

Develop a well inventory table that lists the following items for each identified well:

Well Designation
State ID
Reported Owner
Driller
Date of Completion
Original Use of Well
Current Use of Well
Drilling Method
Borehole Diameter (inches)
Casing Diameter (inches)
Perforated Interval (feet)
Gravel Pack Interval (feet)
Total Well Depth (feet)
Depth to Water (feet below ground surface)
Date of Water Level Measurement

If some of this information is not available, so indicate on the table with an "NA".

Include a regional map showing the facility, ground water flow direction (if known) and the location of all identified wells within a 1-mile radius of the facility.

Identify and describe any potential ground water discharge to surface water bodies.

Identify and list all relevant and applicable water standards for the protection of human health and the environment (e.g., maximum contaminant levels, water quality standards, etc).

7.2 Surface Water Releases

Discuss the facility's potential impact on surface water within a 2-mile radius of the facility. Describe the potential beneficial uses of the surface water (e.g., drinking water supply, recreational, agricultural, industrial, or environmentally sensitive). Identify all water supply intake points and contact areas within a 2-mile radius of the facility. Include a summary of the most recent water

sampling data available for each of the identified water supply intake points. Include a description of the biota in surface water bodies on, adjacent to, or which can be potentially affected by the release. Also summarize any available sediment sampling data.

Include a regional map showing the facility, surface water flow direction, beneficial use areas, and the location of any identified water supply intake points or contact areas that are within a 2-mile radius of the facility.

7.3 <u>Sensitive Ecosystems/Habitats</u>

Discuss the facility's potential impact on sensitive ecosystems.

8. Interim Corrective Measures and Stabilization Assessment

Identify all corrective measures that were or are being undertaken at the facility to stabilize contaminant releases. Describe the objectives of the corrective measures including how the measure is mitigating a potential threat to human health and the environment. Summarize the design features of the corrective measure. Include a schedule for completing any ongoing or future work.

Identify and describe potential interim corrective measure alternatives that could be implemented immediately to stabilize any ongoing releases and/or prevent further migration of contaminants and control source areas.

9. Data Needs

Assess the amount and quality of existing data concerning the facility and determine what additional information must be collected to meet the objectives of the RFI. This assessment must identify any additional information that may be needed to (1) support development of interim measures for early action and (2) adequately evaluate and compare corrective measures alternatives (e.g., field work, treatability studies, computer modeling, literature searches, vendor contacts, etc.). For example, if soil vapor extraction (SVE) is a likely option to address contamination at the facility, then the RFI should collect applicable field data to assess SVE (e.g., soil gas analysis, depth to ground water, etc.). The RFI Workplan must detail how this additional information will be collected.

10. References

Provide a list of references cited in the Current Conditions Report.

B. RCRA Facility Investigation Workplan

The RFI Workplan shall define the procedures necessary to:

- o Gather all necessary data to determine where interim measures are needed and to support the use of interim measures to address immediate threats to human health and/or the environment, to prevent or minimize the spread of contaminants, to control sources of contamination and to accelerate the corrective action process (required for all releases);
- O Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any ground water contamination in and around the facility (only required for releases to ground water);
- O Characterize the geology and hydrogeology in and around the facility (only required for releases to ground water and possibly for releases to soil);
- O Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any soil contamination in and around the facility (only required for releases to soil);
- O Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any soil gas contamination in and around the facility (may be required for releases to ground water and/or soil depending on the circumstances);
- O Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any surface water contamination (includes surface water sediments) at the facility (only required for releases to surface water);
- O Characterize the presence, magnitude, extent (horizontal and vertical), rate of movement and direction of any air releases at the facility (only required for air releases);
- o Characterize any potential sources of contamination

(required for all releases);

- O Characterize the potential pathways of contaminant migration (required for all releases);
- o Identify any actual or potential receptors (required for all releases);
- o Gather all data to support a risk and/or ecological assessment (if required);
- O Gather all necessary data to support the Corrective Measures Study (required for all releases). This could include conducting treatability, pilot, laboratory and/or bench scale studies to assess the effectiveness of a treatment method.

The RFI Workplan shall describe all aspects of the investigation, including project management, sampling and analysis, well drilling and installation and quality assurance and quality control. If the scope of the investigation is such that more than one phase is necessary, the "Phase 1" RFI Workplan must include a summary description of each phase. For example, the first phase of a RFI could be used to gather information necessary to focus the second phase into key areas of the facility that need further investigation.

The required format for a RFI Workplan is described below:

1. Introduction

Briefly introduce the RFI Workplan. Discuss the Order or Permit requiring the RFI and how the RFI Workplan is organized.

2. Investigation Objectives

2.1 Project Objectives

Describe the overall objectives and critical elements of the RFI. State the general information needed from the site (e.g., soil chemistry, hydraulic conductivity of aquifer, stratigraphy, ground water flow direction, identification of potential receptors, etc.). The general information should be consistent with the objectives of the RFI and the data needs identified in the Current Conditions Report.

2.2 <u>Data Quality Objectives</u>

Provide data quality objectives that identify what data are needed and the intended use of the data.

3. Project Management

Describe how the investigation will be managed, including the following information:

- o Organization chart showing key personnel, levels of authority and lines of communication;
- o Project Schedule; and
- o Estimated Project Budget.

Identify the individuals or positions who are responsible for: project management, field activities, laboratory analysis, database management, overall quality assurance, data validation, etc. Include a description of qualifications for personnel performing or directing the RFI, including contractor personnel.

4. Facility Background

Summarize existing contamination (e.g., contaminants, concentrations, etc.), local hydrogeologic setting and any other areas of concern at the facility. Include a map showing the general geographic location of the facility and a more detailed facility map showing the areas of contamination. Provide a reference to the Current Conditions Report and/or other applicable documents as a source of additional information.

5. Field Investigation

5.1 <u>Task Description</u>

Provide a qualitative description of each investigation task. Example tasks may include, but are not limited to the following:

- Task 1: Surface Soil Sampling
- Task 2: Surface Geophysics, Subsurface Soil Boring, and Borehole Geophysics
- Task 3: Data Gathering to Support Interim Corrective Measures
- Task 4: Monitoring Well Installation
- Task 5: Aquifer Testing
- Task 6: Ground Water Sampling
- Task 7: Potential Receptor Identification

Task 8: Treatability Studies

5.2 Rationale for Sampling

Describe where all samples will be collected (location and depth), types of media that will be sampled and the analytical parameters. Explain the rationale for each sampling point, the total number of sampling points, and any statistical approach used to select these points. The conceptual model of contaminant migration developed in the Current Conditions Report should be considered when selecting sampling locations and depths. If some possible sampling points are excluded, explain why. Describe any field screening techniques that will be used to identify samples for laboratory analysis. Include the rationale for use of field screening techniques and criteria for sample selection.

5.2.1 Background Samples

Background samples should be analyzed for the complete set of parameters for each medium; treat sediments, surface soils and subsurface soils as separate media. Background samples are collected, numbered, packaged, and sealed in the same manner as other samples. For long term and/or especially large projects, it is recommended that 10% of samples collected be from background locations.

5.3 <u>Sample Analysis</u>

List and discuss all analyses proposed for the project. Include a table that summarizes the following information for each analysis to be performed:

- o Analytical Parameters
- o Analytical Method Reference Number (from USEPA SW 846)
- o Sample Preparation and/or Extraction Method Reference Number (from USEPA SW 846)
- o Detection and Practical Quantitation Limits (Data above the detection limit but below the practical quantitation limit must be reported with the estimated concentration.)

Discuss the rationale for selection of the analytical parameters. The rationale must relate to site history and the RFI objectives. The achievable detection limits or quantitation limits stated in the selected

methods must be adequate for valid comparisons of analytical results against any action levels or standards. For example, the objective may be to collect ground water data for comparison with Maximum Contaminant Levels (MCL's). If this were the case, it would be important to ensure that any ground water test methods had detection limits below the MCL's. Give an explanation if all samples from the same medium will not be analyzed for the same parameters.

Provide the name(s) of the laboratory(s) that will be doing the analytical work. Indicate any special certifications or ratings of the laboratory. Describe the steps that will be taken to select and pre-qualify analytical laboratories to be used including any previous audits and/or other criteria. If a definite laboratory has not yet been selected, list at least 3 laboratories that are being considered for the analytical work.

5.4 <u>Sample Collection Procedures</u>

Describe how sampling points will be selected in the field, and how these locations will be documented and marked for future reference. If a sampling grid will be used, describe the dimensions and lay out planned for the grid.

Outline sequentially or step-by-step the procedure for collecting a sample for each medium and each different sampling technique. Include a description of sampling equipment (including materials of construction), field measurements, sample preservation, housekeeping/cleanliness techniques and well purging procedures. The procedure described must ensure that a representative sample is collected, and that sample handling does not result in cross contamination or unnecessary loss of contaminants. Special care in sample handling for volatile organic samples must be addressed.

Describe how and when duplicates, blanks, laboratory quality control samples and background samples will be collected. If samples will be filtered, describe filtration equipment and procedures.

The Owner/Operator or Respondent must include sufficient maps and tables to fully describe the sampling effort. This shall include, at a minimum, a map showing all proposed sampling locations and tables

that contain the following information:

Sample Collection Table:

Sampling Location/Interval
Analytical Parameters (e.g., volatile organic compounds)
Analytical Method Number
Medium
Preservation Method
Holding Times (as specified in USEPA SW 846)
Containers (quantity, size, type plus footnotes that discuss source and grade of containers)

<u>Sample Summary Table</u>:

Sample Description/Area (include QC samples)
Analytical Parameters
Analytical Method Number
Preparation or Extraction Method Number
Medium
Number of Sample Sites
Number of Analyses

5.4.1 Equipment Decontamination

Describe the decontamination procedure for all drilling, sampling equipment (including metal sleeves), and field-parameter testing equipment.

The following is a recommended generic procedure for decontamination of sampling equipment:

- o Wash with non-phosphate detergent
- o Tap water rinse
- o 0.1M nitric acid rinse (when cross contamination from metals is a concern)
- o Deionized/distilled water rinse
- o Pesticide grade solvent rinse (when semivolatiles and non-volatile organic contamination may be present)
- o Deionized/distilled water rinse (twice)
- o Organic free water rinse (HPLC grade)

The above procedure is not appropriate for every field condition. Clearly document the decontamination procedures.

5.4.2 Equipment Calibration and Maintenance

Logbooks or pre-formatted calibration worksheets should be maintained for major field instruments, to document servicing, maintenance and instrument modification. The calibration, maintenance and operating procedures for all instruments, equipment and sampling tools must be based upon manufacturer's instructions. List all field equipment to be used, specify the maintenance/calibration frequency for each instrument and the calibration procedures (referenced in text and included in appendices).

5.4.3 Sample Packaging and Shipment

Describe how samples will be packaged and shipped. All applicable Department of Transportation regulations must be followed.

5.4.4 Sample Documentation

Discuss the use of all paperwork including field notebooks, record logs, photographs, sample paperwork, and Chain of Custody forms (include a blank copy in RFI Workplan Appendices) and seals.

Describe how sample containers will be labeled and provide an example label if available. At a minimum, each sample container label should include: project ID, sample location, analytical parameters, date sampled and any preservative added to the sample.

A bound field log book must be maintained by the sampling team to provide a daily record of events. Field log books shall provide the means of recording all data regarding sample collection. All documentation in field books must be made in permanent ink. If an error is made, corrections must be made by crossing a line through the error and entering the correct information. Changes must be initialed, no entries shall be obliterated or rendered unreadable. Entries in the log book must include, at a minimum, the following for each day's sampling:

Date
Starting Time
Meteorological Conditions
Field Personnel Present
Level of Personal Protection

Site Identification
Field Observations/Parameters
Sample Identification Numbers
Location and Description of Sampling Points
Number of Samples Collected
Time of Sample Collection
Signature of Person Making the Entry
Observation of Sample Characteristics
Photo Log
Deviations

5.4.5 Disposal of Contaminated Materials

Describe the storage and disposal methods for all contaminated cuttings, well development and purge water, disposable equipment, decontamination water, and any other contaminated materials. The waste material must be disposed of in a manner consistent with local, state and federal regulations.

5.4.6 Standard Operating Procedures

If Standard Operating Procedures (SOPs) are referenced, the relevant procedure must be summarized in the RFI Workplan. The SOP must be specific to the type of tasks proposed and be clearly referenced in the RFI Workplan. The SOP must also be directly applicable, as written, to the RFI Workplan; otherwise, modifications to the SOP must be discussed. Include the full SOP description in the RFI Workplan appendix.

5.5 Well Construction and Aguifer Testing

When new monitoring wells (or piezometers) are proposed, describe the drilling method, well design and construction details (e.g., depth of well, screen length, slot size, filter pack material, etc.) and well development procedures. Describe the rationale for proposed well locations and selection of all well design and construction criteria (i.e., provide rationale for selection of slot size and screen length).

When aquifer testing is proposed, describe the testing procedures, flow rates, which wells are involved, test periods, how water levels will be measured, and any other pertinent information.

6. Quality Assurance and Quality Control

Quality control checks of field and laboratory sampling and analysis serve two purposes: to document the data quality, and to identify areas of weakness within the measurement process which need correction.

Include a summary table of data quality assurance objectives that, at a minimum, lists:

- o Analysis Group (e.g., volatile organic compounds)
- o Medium
- o Practical Quantitation Limits (PQL)
- o Spike Recovery Control Limits (%R)
- o Duplicate Control Limits +/-(RPD)
- o QA Sample Frequency
- o Data Validation

A reference may note the specific pages from USEPA's SW 846 Guidance Document that list the test method objectives for precision and accuracy. If the field and laboratory numerical data quality objectives for precision are the same and presented on a single table, then a statement should be made to this effect and added as a footnote to the table (e.g., "These limits apply to both field and laboratory duplicates"). Include a copy of the analytical laboratory quality assurance/quality control plan in the appendices of the RFI Workplan and provide the equations for calculating precision and accuracy.

6.1 Field Quality Control Samples

6.1.1 Field Duplicates

Duplicates are additional samples that must be collected to check for sampling and analytical precision. Duplicate samples for all parameters and media must be collected at a frequency of at least one sample per week or 10 percent of all field samples, whichever is greater.

Duplicates should be collected from points which are known or suspected to be contaminated. For large projects, duplicates should be spread out over the entire site and collected at regular intervals.

Duplicates must be collected, numbered, packaged, and sealed in the same manner as other samples; duplicate samples are assigned separate sample

numbers and submitted blind to the laboratory.

6.1.2 Blank Samples

Blanks are samples that must be collected to check for possible cross-contamination during sample collection and shipment and in the laboratory. Blank samples should be analyzed for all parameters being evaluated. At least one blank sample per day must be done for all water and air sampling. Additionally, field blanks are required for soil sampling if non-dedicated field equipment is being used for sample collection.

Blank samples must be prepared using analytically-certified, organic-free (HPLC-grade) water for organic parameters and metal-free (deionized-distilled) water for inorganic parameters. Blanks must be collected, numbered, packaged, and sealed in the same manner as other samples; blank samples are assigned separate sample numbers and submitted blind to the laboratory. The following types of blank samples may be required:

Equipment Blank: An equipment blank must be collected when sampling equipment (e.g., bladder pump) or a sample collection vessel (e.g., a bailer or beaker) is decontaminated and reused in the field. Use the appropriate "blank" water to rinse the sampling equipment after the equipment has been decontaminated and then collect this water in the proper sample containers.

Field Bottle Blank: This type of blank must be collected when sampling equipment decontamination is not necessary. The field bottle blank is obtained by pouring the appropriate "blank" water into a container at a sampling point.

6.2 <u>Laboratory Quality Control Samples</u>

Laboratories routinely perform medium spike and laboratory duplicate analysis on field samples as a quality control check. A minimum of one field sample per week or 1 per 20 samples (including field blanks and duplicates), whichever is greater, must be designated as the "Lab QC Sample" for the medium and laboratory duplicate analysis.

Laboratory quality control samples should be selected

from sampling points which are suspected to be moderately contaminated. Label the bottles and all copies of the paperwork as "Lab QC Sample"; the laboratory must know that this sample is for their QC analyses. The first laboratory QC sample of the sampling effort should be part of the first or second day's shipment. Subsequent laboratory QC samples should be spread out over the entire sampling effort.

For water media, 2-3 times the normal sample volume must be collected for the laboratory QC sample. Additional volume is usually not necessary for soil samples.

6.3 <u>Performance System Audits by the Owner/Operator or Respondent</u>

This section should describe any internal performance and/or system audit which the Owner/Operator or Respondent will conduct to monitor the capability and performance of the project. The extent of the audit program should reflect the data quality needs and intended data uses. Audits are used to quickly identify and correct problems thus preventing and/or reducing costly errors. For example, a performance audit could include monitoring field activities to ensure consistency with the workplan. If the audit strategy has already been addressed in a QA program plan or standard operating procedure, cite the appropriate section which contains the information.

7. Data Management

Describe how investigation data and results will be evaluated, documented and managed, including development of an analytical database. State the criteria that will be used by the project team to review and determine the quality of data. To document any quality assurance anomalies, the RFI QC Summary Forms (see Appendix A of this attachment) must be completed by the analytical laboratory and submitted as part of the RFI Report. In addition, provide examples of any other forms or checklists to be used.

Identify and discuss personnel and data management responsibilities, all field, laboratory and other data to be recorded and maintained, and any statistical methods that may be used to manipulate the data.

8. References

Provide a list of references cited in the RFI Workplan.

C. RCRA Facility Investigation Report

A RFI Report must be prepared that describes the entire site investigation and presents the basic results. The RFI Report must clearly present an evaluation of investigation results (e.g., all potential contaminant source areas must be identified, potential migration pathways must be described, and affected media shown, etc.).

The RFI Report must also include an evaluation of the completeness of the investigation and indicate if additional work is needed. This work could include additional investigation activities and/or interim corrective measures to stabilize contaminant release areas and limit contaminant migration. If additional work is needed, the Owner/Operator or Respondent must submit a Phase 2 RFI Workplan and/or Interim Corrective Measures Workplan must be submitted to the Department along with the RFI Report.

At a minimum, the RFI Report must include:

- o A summary of investigation results (include tables that summarize analytical results).
- o A complete description of the investigation, including all data necessary to understand the project in its entirety including all investigative methods and procedures.
- o A discussion of key decision points encountered and resolved during the course of the investigation.
- o Graphical displays such as isopleths, potentiometric surface maps, cross-sections, plume contour maps (showing concentration levels, isoconcentration contours), facility maps (showing sample locations, etc.) and regional maps (showing receptor areas, water supply wells, etc.) that describe report results. Highlight important facts such as geologic features that may affect contaminant transport.
- o Tables that list all chemistry data for each medium investigated.
- o An analysis of current and existing ground water data to illustrate temporal changes for both water chemistry

and piezometric data (use graphics whenever possible).

- o A description of potential or known impacts on human and environmental receptors from releases at the facility. Depending on the site specific circumstances, this analysis could be based on the results from contaminant dispersion models if field validation is performed.
- O A discussion of any upset conditions that occurred during any sampling events or laboratory analysis that may influence the results. The discussion must include any problems with the chain of custody procedures, sample holding times, sample preservation, handling and transport procedures, field equipment calibration and handling, field blank results that show potential sample contamination and any field duplicate results that indicate a potential problem. Summary tables must be provided that show the upset condition and the samples that could be impacted. The RFI QC Summary Forms (see Appendix A of this attachment) must be completed by the analytical laboratory and submitted as part of the RFI Report.
- o Assessment of the entire QA/QC program effectiveness.
- o Data validation results should be documented in the RFI Report.

In addition to the RFI Report, the Department may require the Owner/Operator or Respondent to submit the analytical results (database) on a floppy disk (Department will specify the format). All raw laboratory and field data (e.g., analytical reports) must be kept at the facility and be made available or sent to the Department upon request.